46604 research outputs found
Sort by
Green Tea with Rhubarb Root Reduces Plasma Lipids While Preserving Gut Microbial Stability in a Healthy Human Cohort
Background/Objectives: Cardiovascular diseases remain a leading cause of mortality and morbidity, and dyslipidaemia is one of the major risk factors. The widespread use of herbs and medicinal plants in traditional medicine has garnered increasing recognition as a valuable resource for increasing wellness and reducing the onset of disease. Several epidemiologic and clinical studies have shown that altering blood lipid profiles and maintaining gut homeostasis may protect against cardiovascular diseases. Methods: A randomised, active-controlled parallel human clinical trial (n = 52) with three herbal tea infusions (green (Camellia sinensis) tea with rhubarb root, green tea with senna, and active control green tea) daily for 21 days in a free-living healthy adult cohort was conducted to assess the potential for health benefits in terms of plasma lipids and gut health. Paired plasma samples were analysed using Afinion lipid panels (total cholesterol, LDL (low-density lipoprotein) cholesterol, HDL (high-density lipoprotein) cholesterol, triglycerides, and non-HDL cholesterol) and paired stool samples were analysed using 16S rRNA amplicon sequencing to determine bacterial diversity within the gut microbiome. Results: Among participants providing fasting blood samples before and after the intervention (n = 47), consumption of herbal rhubarb root tea and green tea significantly lowered total cholesterol, LDL-cholesterol, and non-HDL cholesterol (p < 0.05) in plasma after 21 days of daily consumption when compared with concentrations before the intervention. No significant change was observed in the senna tea group. In participants providing stool samples (n = 48), no significant differences in overall microbial composition were observed between pre- and post-intervention, even at the genus level. While no significant changes in overall microbial composition were observed, specific bacterial genera, such as Dorea spp., showed correlations with LDL cholesterol concentrations, suggesting potential microbiota-mediated effects of tea consumption. Diet and BMI was maintained in each of the three groups before and after the trial. Conclusions: It was found that drinking a cup of rhubarb root herbal or green tea infusion for 21 days produced beneficial effects on lipid profiles and maintained gut eubiosis without observable adverse effects in a healthy human cohort. More studies are needed to fully understand the effects of rhubarb root and green tea in fatty acid metabolism and gut microbial composition
Electrolyte tailoring and interfacial engineering for safe and high-temperature lithium-ion batteries
The deployment of lithium-ion batteries, essential for military and space exploration applications, faces restrictions due to safety issues and performance degradation stemming from the uncontrollable side reactions between electrolytes and electrodes, particularly at high temperatures. Current research focuses on interfacial modification and non-flammable electrolyte development, which fails to simultaneously improve both safety and cyclic performance. This work introduces a synergistic approach by incorporating weakly polar methyl 2,2-difluoro-2-(fluorosulfonyl)acetate (MDFSA) and non-flammable 2-(2,2,2-trifluoroethoxy)-1,3,2-dioxaphospholane 2-oxide (TFP) to achieve a localized high-concentration electrolyte (LHCE) that can stabilize both anode and cathode interfaces and thus improve the cycling life and safety of batteries, particularly at evaluated temperatures. As a result, the NCM811|Gr pouch cell with MDFSA-containing LHCE exhibits a high capacity retention rate of 79.6% at 60 °C after 1200 cycles due to the formation of thermally and structurally stable interfaces on the electrodes, outperforming pouch cells utilizing commercial carbonate-based (capacity retention: 23.7% after 125 cycles). Additionally, pouch cells in the charging state also exhibit commendable safety performance, indicating potential for practical applications
Parasite Abundance‐Occupancy Relationships Across Biogeographic Regions: Joint Effects of Niche Breadth, Host Availability and Climate
Aim: Changing biodiversity and environmental conditions may allow multi-host pathogens to spread among host species and affect prevalence. There are several widely acknowledged theories about mechanisms that may influence variation in pathogen prevalence, including the controversially debated dilution effect and abundance-occupancy relationship hypotheses. Here, we explore such abundance-occupancy relationships for unique lineages of three vector-borne avian blood parasite genera (the avian malaria parasite Plasmodium and the related haemosporidian parasites Parahaemoproteus and Leucocytozoon) across biogeographical regions.Location: Nearctic-Neotropical and Palearctic-Afrotropical regions.Methods: We compiled a cross-continental dataset of 17,116 bird individuals surveyed from 46 bird assemblages across the Nearctic-Neotropical and Palearctic-Afrotropical regions and explored relationships between local parasite lineage prevalence and host assemblage metrics in a Bayesian random regression framework.Results: Most lineages from these three genera infected ≥ 5 host species and exhibited clear phylogenetic or functional host specificity. Lineage prevalence from all three genera increased with host range, but also with higher degrees of specialisation to phylogenetically or functionally related host species. Local avian community features were also found to be important drivers of prevalence. For example, bird species richness was positively correlated with lineage prevalence for Plasmodium and Leucocytozoon, whereas higher relative abundances of the main host species were associated with lower prevalence for Plasmodium and Parahaemoproteus but higher prevalence for Leucocytozoon.Conclusions: Our results broadly support several of the leading hypotheses about mechanisms that influence pathogen prevalence, including the niche breadth hypothesis in that higher avian host species diversity and broader host range amplify prevalence through increasing ecological opportunities and the trade-off hypotheses in that specialisation among subsets of available host species may increase prevalence. Furthermore, the three studied avian haemosporidian genera exhibited different abundance-occupancy relationships across the major global climate gradients and in relation to host availability, emphasising that these relationships do not strictly follow common rules for vector-borne parasites with different life histories
A case for the use of deep learning algorithms for individual and population level assessments of mental health disorders: Predicting depression among China's elderly
Background: With the continuous advancement of age in China, attention should be paid to the mental well-being of the elderly population. The present study uses a novel machine learning (ML) method on a large representative elderly database in China as a sample to predict the risk factors of depression in the elderly population from both holistic and individual level. Methods: A total of participants met the inclusion criteria from the fourth waves of the China Health and Retirement Longitudinal Study (CHARLS) were analyzed with ML algorithms. The level of depression was assessed by the 10-item Center for Epidemiological Studies Depression Scale (CESD-10). Results: The current study found top 5 factors that were important for predicting depression in the elderly population in China, including average sleep time, gender, age, social activities and nap time during the day. The results also provide reliable diagnostic likelihood at the individual level to support clinicians identify the most impactful factors contributing to patient depression. Our findings also suggested that activities such as interacting with friends and play ma-Jong, chess or join community clubs may have a positive collaborative effect for elderly's mental health. Conclusions: Holistic approaches are an effective method of deriving and interpreting sophisticated models of mental health in elderly populations. More detailed information about a patient's demographics, medical history, sleeping patterns and social/leisure activities can help to inform policy and treatment interventions on a population and individual level. Large scale surveys such as CHARLS are effective methods for testing the most accurate models, however, further research using professional clinical input could further advance the field
A benchmark concentration-based strategy for evaluating the combined effects of genotoxic compounds in TK6 cells
Chemical risk assessment has historically focused on single compounds, neglecting the implications of combined exposures. To bridge this gap, several methodologies, such as concentration addition (CA) and independent action (IA), have been developed. However, a systematic, consistent, and integrated approach across various legislative frameworks is still lacking. The assessment of combined effects of genotoxicants is even more challenging, as genotoxicity data are typically evaluated qualitatively, without considering the effect size. This study aimed to develop a quantitative approach for evaluating the combined effects of genotoxic compounds with both similar and dissimilar modes of action (MoA), based on the benchmark concentration (BMC) principle. A proof-of-concept study was conducted using the in vitro micronucleus (MNvit) test to examine two types of binary mixtures: ethyl methanesulfonate (EMS) and methyl methanesulfonate (MMS), which share similar MoA, and MMS and etoposide (ETP), which have dissimilar MoA. The methodology involved collecting data for individual compounds, calculating BMC values, composing mixtures with different ratios and inducing various effect levels, testing these mixtures, and comparing the experimental results with the modelled data to verify additivity. The findings indicated that for both mixtures, the experimental responses aligned with the predicted additive effects, supporting the validity of the additivity principle. This study highlights the potential of an optimized BMC-based approach as a robust framework for testing chemical mixtures. It should be adopted in future studies to evaluate a wider range of genotoxic compounds, offering a more comprehensive and quantitative strategy for assessing combined chemical exposures
Mapping Molecular Pathways of Multiple Sclerosis: A Gene Prioritization and Network Analysis of White Matter Pathology Transcriptomics
ObjectivesRapid advances in transcriptomics have driven efforts to identify deregulated pathways in multiple sclerosis (MS) tissues, though many detected differentially expressed genes are likely false positives, with only a small fraction reflecting actual pathological events. Robust, integrative methods are essential for accurately understanding the molecular mechanisms underlying MS pathology.MethodsWe conducted a gene prioritization analysis of MS white matter pathology transcriptomic studies. Articles were sought in Scopus and PubMed up to July 31, 2024. Potentially eligible publications were those that provided either transcriptomics datasets (deposited in GEO) or lists of differentially expressed genes comparing MS white matter to control white matter.ResultsApplying a vote-count strategy to search for the intersection of genes reported in multiple independent studies with a consistent fold-change direction, followed by a Monte Carlo simulation, we identified 528 highly significant differentially expressed multi-study genes (p < 0.0001; 10,000 simulations). Functional enrichment analysis revealed deregulation of the folate pathway in MS normal-appearing white matter, and tumor necrosis factor (TNF) -related and complement-related pathways in active and chronic active lesions, respectively. Network analysis identified 6 key signaling hubs: PTPRC, HLA-B, MYC, MMP2, COL11A2, MAG. The major nodes identified revealed mechanistic concordance with published in vivo MS models, supporting their value as potential therapeutic targets.InterpretationOur strategy provides a robust framework for integrating gene expression data, effectively identifying the intricate pathways altered in human diseased tissues. This method holds potential for translating findings into drug development strategies. ANN NEUROL 202
Interrogating green social prescribing in South Wales; A multi-stakeholder qualitative exploration
As an umbrella term, social prescribing offers varied routes into society which promise to support, enhance, and empower individual citizens to take control of their own health and wellbeing. Globally healthcare systems are struggling to cope with the increasing demands of an ageing population and the NHS (UK) is no exception. Social prescribing is heralded as a means to relieve the burden on primary care and provide support for the 20% of patients whose needs are non-medical. As such an increasing array of schemes are available, spanning five sub-sets: creative or nature-based referrals, welfare services, exercise referrals, education programmes or befriending support. Green social prescription offers significant potential to promote wellbeing and improve health outcomes. However limited research has explored this emergent sub-set
Methodological reflections on tracing networked images
Purpose: Many scholars highlight a need for reflexive methodological accounts to support visual research. Therefore, this paper offers detailed reflection on the methods involved in tracing and analysing 248 commercial images of entrepreneurship. This account supports our published work examining entrepreneurial masculinities and femininities, which conceptualised the gendering of entrepreneurial aesthetics, and proposed the significance of image networks in the reproduction of neoliberal ideals. Design/Methodology/Approach:Now based on further methodological reflexivity we offer insights on both the possibilities and challenges of tracing networked images by reviewing four methodological complexities: reflexive engagement with online images; working with and across platforms; tracing as a potentially never-ending process; and montage approaches to analysis. Findings: Our account focuses on a specific form of imagery – commercial images – on a certain representation – the gendered entrepreneur – and on a particular complex site of encounter – online. This work mapped a visual repertoire of gendered entrepreneurship online by tracing visual constructions of entrepreneurial masculinity and femininity. In this paper we open the methodological ‘black box’ of our study and explain our belief that methodological advances can only be built through exposing our working practice. Originality: Through our detailed reflective account we aim to open discussions to aid development and use of complex visual methods online
Route Planning Process by the Endangered Black Lion Tamarin in Different Environmental Contexts
Daily, primates take a variety of decisions to establish why, when, and where to move. However, little is known about the factors influencing and shaping primate daily routes. We investigated the decision-making processes linked to route planning in four groups of black lion tamarins (BLT—Leontopithecus chrysopygus). We studied these endangered platyrrhines within four distinct environmental contexts across their natural distribution (i.e., a continuous forest, a 500-ha forest fragment, a 100-ha forest fragment, and a riparian forest). We used the Change Point Test to identify the points of significant direction change (CPs), which can be considered travel goals along BLT daily trajectories and are key components of travel planning. Considering the high importance of fruits and gum in BLT's diet, we predicted that feeding trees would be the main factor shaping their paths (feeding CPs-FCPs). Also, given previous evidence that platyrrhines use landmarks (i.e., characteristic features from the terrain) as nodes in route network systems (i.e., points of intersection connecting habitual route segments), we expected part of CPs to be located close to the intersection points and to be associated with “locomotion” behavior (LCPs). Analyzing 61 daily paths in four forest fragments, our results showed that BLTs planned routes to reach feeding trees, which primarily determined path orientation. As hypothesized, locomotion was the most frequent behavior observed in CPs, but only in the continuous and riparian forests, with LCPs located as close to intersections as FCPs. Interestingly, these two areas presented the most extreme values (i.e., higher and lower values, respectively) in terms of used area, richness of resources and distances traveled between fruit-feeding trees. Our results suggest that BLTs plan daily routes conditional on the environmental context to reach travel goals, likely to maximize route efficiency to reach out of sight feeding trees
Application‐Targeted Metal Grid‐Enhanced Transparent Electrodes for Organic Photovoltaics
Transparent conducting electrodes (TCEs) are integral components in optoelectronic devices, facilitating both light transmission and electrical conduction. Over the past four decades, substantial advancements have been made in TCE materials, including transparent conducting oxides (TCOs) such as indium tin oxide (ITO) and fluorine-doped tin oxide (FTO), which remain dominant technologies in practical applications. Despite these advancements, current TCEs exhibit relatively high sheet resistance (Rsheet), posing a significant barrier to the scale-up of solution-processed devices such as organic photovoltaics (OPVs). This work addresses the scaling limitations of TCEs in OPVs by proposing the integration of a TCE with a metallic grid (g-TCE) to mitigate the high Rsheet issue. The performance of g-TCEs in OPVs is evaluated across various irradiance levels and TCE Rsheet values. Additionally, a novel, unitless figure-of-merit tailored to specific PV devices is introduced, which enables benchmarking beyond traditional TCE FoMs. Exemplifications of g-TCEs include aluminium-doped zinc oxide (AZO), which has an equivalent Rsheet of 0.5 Ω □−1, while maintaining an average visible transmittance exceeding 77%, outperforming all state-of-the-art monolithic TCE materials. These findings demonstrate that g-TCEs present a viable pathway for the development of large-area, solution-processed PV devices