1,455 research outputs found
Symptoms and Surgical Management of a Distal Choledochal Cyst in a Patient with Pancreas Divisum: Case Report and Review of the Literature
We report the case of a 63-year-old woman who presented with the rare finding of a distal choledochocele in a pancreas divisum with recurrent abdominal pain and episodes of pancreatitis. She underwent successful resection with choledochectomy, papillectomy and reconstruction with a hepatico-jejunostomy and reinsertion of the uncinate pancreatic duct into the same jejunal loop. Comparable literature findings are discussed with regard to the presented case
Spin Discrimination in Three-Body Decays
The identification of the correct model for physics beyond the Standard Model
requires the determination of the spin of new particles. We investigate to
which extent the spin of a new particle can be identified in scenarios
where it decays dominantly in three-body decays . Here we
assume that is a candidate for dark matter and escapes direct detection at
a high energy collider such as the LHC. We show that in the case that all
intermediate particles are heavy, one can get information on the spins of
and at the LHC by exploiting the invariant mass distribution of the two
standard model fermions. We develop a model-independent strategy to determine
the spins without prior knowledge of the unknown couplings and test it in a
series of Monte Carlo studies.Comment: 31+1 pages, 4 figures, 8 tables, JHEP.cls include
Recent advances in electronic structure theory and their influence on the accuracy of ab initio potential energy surfaces
Recent advances in electronic structure theory and the availability of high speed vector processors have substantially increased the accuracy of ab initio potential energy surfaces. The recently developed atomic natural orbital approach for basis set contraction has reduced both the basis set incompleteness and superposition errors in molecular calculations. Furthermore, full CI calculations can often be used to calibrate a CASSCF/MRCI approach that quantitatively accounts for the valence correlation energy. These computational advances also provide a vehicle for systematically improving the calculations and for estimating the residual error in the calculations. Calculations on selected diatomic and triatomic systems will be used to illustrate the accuracy that currently can be achieved for molecular systems. In particular, the F+H2 yields HF+H potential energy hypersurface is used to illustrate the impact of these computational advances on the calculation of potential energy surfaces
Physical activity and aerobic fitness in children after liver transplantation
To determine physical activity (PA), aerobic fitness, muscle strength, health-related quality of life (HRQOL), fatigue, and participation in children after liver transplantation. Children, 6-12 years, at least one year after liver transplantation, participated in this cross-sectional study. Measurements: Time spent in moderate to vigorous PA (MVPA) was measured using an accelerometer, and aerobic fitness (VO2 peak) was measured by cardiopulmonary exercise testing. Muscle strength was measured by hand-held dynamometry. Fatigue was measured using the multidimensional fatigue scale, and HRQOL with the Pediatric Quality of life Core scales and leisure activities was measured using the Children's Assessment of Participation and Enjoyment. Outcomes (medians and interquartile range (IQR)) were compared to norm values. Twenty-six children participated in this study (14 boys, age 9.7 years, IQR 7.7;11.4). Children spent 0.8 hours/d (IQR 0.6;1.1) on MVPA. One child met the recommendation of at least 1 hour of MVPA every day of the week. Aerobic fitness was similar to norms (VO2 peak 1.4 (L)(/min), IQR 1.1;1.7, Z-score -0.3). Z-scores of muscle strength ranged between -1.4 and -0.4 and HRQOL and fatigue between -2.3 and -0.4. Participation was similar to published norms (Z-scores between -0.6 and 0.6). Young children after liver transplantation have similar MVPA patterns and aerobic fitness compared to published norms. Despite lower HRQOL, more fatigue, and less muscle strength, these children have similar participation in daily activities. Although children do well, it remains important to stimulate PA in children after liver transplantation in the context of long-term management
Causarum Investigatio and the Two Bell's Theorems of John Bell
"Bell's theorem" can refer to two different theorems that John Bell proved,
the first in 1964 and the second in 1976. His 1964 theorem is the
incompatibility of quantum phenomena with the joint assumptions of Locality and
Predetermination. His 1976 theorem is their incompatibility with the single
property of Local Causality. This is contrary to Bell's own later assertions,
that his 1964 theorem began with the assumption of Local Causality, even if not
by that name. Although the two Bell's theorems are logically equivalent, their
assumptions are not. Hence, the earlier and later theorems suggest quite
different conclusions, embraced by operationalists and realists, respectively.
The key issue is whether Locality or Local Causality is the appropriate notion
emanating from Relativistic Causality, and this rests on one's basic notion of
causation. For operationalists the appropriate notion is what is here called
the Principle of Agent-Causation, while for realists it is Reichenbach's
Principle of common cause. By breaking down the latter into even more basic
Postulates, it is possible to obtain a version of Bell's theorem in which each
camp could reject one assumption, happy that the remaining assumptions reflect
its weltanschauung. Formulating Bell's theorem in terms of causation is
fruitful not just for attempting to reconcile the two camps, but also for
better describing the ontology of different quantum interpretations and for
more deeply understanding the implications of Bell's marvellous work.Comment: 24 pages. Prepared for proceedings of the "Quantum [Un]speakables II"
conference (Vienna, 2014), to be published by Springe
Chromatic Illumination Discrimination Ability Reveals that Human Colour Constancy Is Optimised for Blue Daylight Illuminations
The phenomenon of colour constancy in human visual perception keeps surface colours constant, despite changes in their reflected light due to changing illumination. Although colour constancy has evolved under a constrained subset of illuminations, it is unknown whether its underlying mechanisms, thought to involve multiple components from retina to cortex, are optimised for particular environmental variations. Here we demonstrate a new method for investigating colour constancy using illumination matching in real scenes which, unlike previous methods using surface matching and simulated scenes, allows testing of multiple, real illuminations. We use real scenes consisting of solid familiar or unfamiliar objects against uniform or variegated backgrounds and compare discrimination performance for typical illuminations from the daylight chromaticity locus (approximately blue-yellow) and atypical spectra from an orthogonal locus (approximately red-green, at correlated colour temperature 6700 K), all produced in real time by a 10-channel LED illuminator. We find that discrimination of illumination changes is poorer along the daylight locus than the atypical locus, and is poorest particularly for bluer illumination changes, demonstrating conversely that surface colour constancy is best for blue daylight illuminations. Illumination discrimination is also enhanced, and therefore colour constancy diminished, for uniform backgrounds, irrespective of the object type. These results are not explained by statistical properties of the scene signal changes at the retinal level. We conclude that high-level mechanisms of colour constancy are biased for the blue daylight illuminations and variegated backgrounds to which the human visual system has typically been exposed
Thermopower of the Correlated Narrow Gap Semiconductor FeSi and Comparison to RuSi
Iron based narrow gap semiconductors such as FeSi, FeSb2, or FeGa3 have
received a lot of attention because they exhibit a large thermopower, as well
as striking similarities to heavy fermion Kondo insulators. Many proposals have
been advanced, however, lacking quantitative methodologies applied to this
problem, a consensus remained elusive to date. Here, we employ realistic
many-body calculations to elucidate the impact of electronic correlation
effects on FeSi. Our methodology accounts for all substantial anomalies
observed in FeSi: the metallization, the lack of conservation of spectral
weight in optical spectroscopy, and the Curie susceptibility. In particular we
find a very good agreement for the anomalous thermoelectric power. Validated by
this congruence with experiment, we further discuss a new physical picture of
the microscopic nature of the insulator-to-metal crossover. Indeed, we find the
suppression of the Seebeck coefficient to be driven by correlation induced
incoherence. Finally, we compare FeSi to its iso-structural and iso-electronic
homologue RuSi, and predict that partially substituted Fe(1-x)Ru(x)Si will
exhibit an increased thermopower at intermediate temperatures.Comment: 14 pages. Proceedings of the Hvar 2011 Workshop on 'New materials for
thermoelectric applications: theory and experiment
Probing the subtropical lowermost stratosphere and the tropical upper troposphere and tropopause layer for inorganic bromine
We report measurements of CH4 (measured in situ by the Harvard University Picarro Cavity Ringdown Spectrometer (HUPCRS) and NOAA Unmanned Aircraft System Chromatograph for Atmospheric Trace Species (UCATS) instruments), O3 (measured in situ by the NOAA dual-beam ultraviolet (UV) photometer), NO2, BrO (remotely detected by spectroscopic UV–visible (UV–vis) limb observations; see the companion paper of Stutz et al., 2016), and of some key brominated source gases in whole-air samples of the Global Hawk Whole Air Sampler (GWAS) instrument within the subtropical lowermost stratosphere (LS) and the tropical upper troposphere (UT) and tropopause layer (TTL). The measurements were performed within the framework of the NASA-ATTREX (National Aeronautics and Space Administration – Airborne Tropical Tropopause Experiment) project from aboard the Global Hawk (GH) during six deployments over the eastern Pacific in early 2013. These measurements are compared with TOMCAT/SLIMCAT (Toulouse Off-line Model of Chemistry And Transport/Single Layer Isentropic Model of Chemistry And Transport) 3-D model simulations, aiming at improvements of our understanding of the bromine budget and photochemistry in the LS, UT, and TTL. Changes in local O3 (and NO2 and BrO) due to transport processes are separated from photochemical processes in intercomparisons of measured and modeled CH4 and O3. After excellent agreement is achieved among measured and simulated CH4 and O3, measured and modeled [NO2] are found to closely agree with ≤ 15 ppt in the TTL (which is the detection limit) and within a typical range of 70 to 170 ppt in the subtropical LS during the daytime. Measured [BrO] ranges between 3 and 9 ppt in the subtropical LS. In the TTL, [BrO] reaches 0.5 ± 0.5 ppt at the bottom (150 hPa∕355 K∕14 km) and up to about 5 ppt at the top (70 hPa∕425 K∕18.5 km; see Fueglistaler et al., 2009 for the definition of the TTL used), in overall good agreement with the model simulations. Depending on the photochemical regime, the TOMCAT∕SLIMCAT simulations tend to slightly underpredict measured BrO for large BrO concentrations, i.e., in the upper TTL and LS. The measured BrO and modeled BrO ∕ Bryinorg ratio is further used to calculate inorganic bromine, Bryinorg. For the TTL (i.e., when [CH4] ≥ 1790 ppb), [Bryinorg] is found to increase from a mean of 2.63 ± 1.04 ppt for potential temperatures (θ) in the range of 350–360 K to 5.11 ± 1.57 ppt for θ = 390 − 400 K, whereas in the subtropical LS (i.e., when [CH4] ≤ 1790 ppb), it reaches 7.66 ± 2.95 ppt for θ in the range of 390–400 K. Finally, for the eastern Pacific (170–90° W), the TOMCAT/SLIMCAT simulations indicate a net loss of ozone of −0.3 ppbv day−1 at the base of the TTL (θ = 355 K) and a net production of +1.8 ppbv day−1 in the upper part (θ = 383 K)
Multiplicity Distributions and Charged-neutral Fluctuations
Results from the multiplicity distributions of inclusive photons and charged
particles, scaling of particle multiplicities, event-by-event multiplicity
fluctuations, and charged-neutral fluctuations in 158 GeV Pb+Pb
collisions are presented and discussed. A scaling of charged particle
multiplicity as and photons as have been observed, indicating violation of naive wounded nucleon model.
The analysis of localized charged-neutral fluctuation indicates a
model-independent demonstration of non-statistical fluctuations in both charged
particles and photons in limited azimuthal regions. However, no correlated
charged-neutral fluctuations are observed.Comment: Talk given at the International Symposium on Nuclear Physics
(ISNP-2000), Mumbai, India, 18-22 Dec 2000, Proceedings to be published in
Pramana, Journal of Physic
- …