39,393 research outputs found
Protein folding in hydrophobic-polar lattice model: a flexible ant colony optimization approach
This paper proposes a flexible ant colony (FAC) algorithm for solving protein folding problems based on the hydrophobic-polar square lattice model. Collaborations of novel pheromone and heuristic strategies in the proposed algorithm make it more effective in predicting structures of proteins compared with other state-of-the-art algorithms
Recommended from our members
Investigate the impacts of assimilating satellite rainfall estimates on rainstorm forecast over southwest United States
Using the MM5-4DVAR system, a monsoon rainstorm case over southern Arizona (5-6 August 2002) was investigated for the influence of assimilating satellite rainfall estimates on precipitation forecasts. A set of numerical experiments was conducted with multiple configurations including using 20-km or 30-km grid distances and none or 3-h or 6-h assimilation time windows. Results show that satellite rainfall assimilation can improve the rainstorm-forecasting pattern and amount to some extent. The minimization procedure of 4DVAR is sensitive to model spatial resolution and the assimilation time window. The 3-h assimilation window with hourly rainfall data works well for the 6-h forecast, and for 12-h or longer forecasts, a 6-h assimilation window will be requested. Copyright 2004 by the American Geophysical Union
Recommended from our members
Impact of assimilating rainfall derived from radar and satellites on rainstorm forecasts over the Southwestern United States
The impact of assimilating rainfall derived from radar and satellites on rainstorm forecasts over the Southwestern United States is discussed. The major advantage of 4DVAR is the use of full model dynamics and physics to assimilate multiple-time-level observation data. Rainfall assimilation via 4DVAR is used to improve the moisture distributions in model IC. It is found that by using 4DVAR to generate model IC, the precipitation intensity and patterns can be improved substantially over the mid-latitude plain regions
Recommended from our members
Influence of assimilating rainfall derived from WSR-88D radar on the rainstorm forecasts over the southwestern United States
In this study, the impact of rainfall assimilation on the forecasts of convective rainfall over the mountainous areas in the southwestern United States is investigated. The rainfall is derived from the U.S. Weather Surveillance Radar-1988 Doppler (WSR-88D) radar network, and the fifth-generation Mesoscale Model (MM5) Four-Dimensional Variational (4DVAR) system is employed in the study. We evaluate the rainfall assimilation skill through two rainstorm events (5-6 August and 11-12 September 2002) that occurred over the southwestern United States in 2002. A series of experiments for the two cases is conducted. The results show that the minimization process in the 4DVAR is sensitive to the length of assimilation window and error variance in the observation data. Assimilation of rainfall can produce a better short-range precipitation forecast. However, the time range of improved forecasts is limited to about 15 hours with the model resolution of 20 km. It is indicated that rainfall assimilation produces more realistic moisture divergence and temperature fields in the initial conditions for the two cases. Therefore the forecast of rainstorms is closer to observations in both quantity and pattern. Copyright 2006 by the American Geophysical Union
Performance of Photosensors in the PandaX-I Experiment
We report the long term performance of the photosensors, 143 one-inch
R8520-406 and 37 three-inch R11410-MOD photomultipliers from Hamamatsu, in the
first phase of the PandaX dual-phase xenon dark matter experiment. This is the
first time that a significant number of R11410 photomultiplier tubes were
operated in liquid xenon for an extended period, providing important guidance
to the future large xenon-based dark matter experiments.Comment: v3 as accepted by JINST with modifications based on reviewers'
comment
A Sino-German 6cm polarisation survey of the Galactic plane - VIII. Small-diameter sources
Information of small-diameter sources is extracted from the Sino-German 6cm
polarisation survey of the Galactic plane carried out with the Urumqi 25-m
telescope. We performed two-dimensional elliptical Gaussian fits to the 6cm
maps to obtain a list of sources with total-intensity and polarised flux
densities. The source list contains 3832 sources with a fitted diameter smaller
than 16 arcmin and a peak flux density exceeding 30 mJy, so about 5 times the
rms noise, of the total-intensity data. The cumulative source count indicates
completeness for flux densities exceeding about 60 mJy. We identify 125
linearly polarised sources at 6cm with a peak polarisation flux density greater
than 10 mJy, so about 3 times the rms noise, of the polarised-intensity data.
Despite lacking compact steep spectrum sources, the 6cm catalogue lists about
20 percent more sources than the Effelsberg 21cm source catalogue at the same
angular resolution and for the same area. Most of the faint 6cm sources must
have a flat spectrum and are either HII regions or extragalactic. When compared
with the Green Bank 6cm (GB6) catalogue, we obtain higher flux densities for a
number of extended sources with complex structures. Polarised 6cm sources
density are uniformly distributed in Galactic latitude. Their number density
decreases towards the inner Galaxy. More than 80 percent of the polarised
sources are most likely extragalactic. With a few exceptions, the sources have
a higher percentage polarisation at 6cm than at 21cm. Depolarisation seems to
occur mostly within the sources with a minor contribution from the Galactic
foreground emission.Comment: A&A accepted, 9 pages, 5 figures, Tables 1 and 2 are accessible from
http://zmtt.bao.ac.cn/6cm
- …