50 research outputs found
Airway obstruction, serum vitamin D and mortality in a 33-year follow-up study
Background and objective: Chronic obstructive pulmonary disease and low vitamin D status predict mortality, but their combined effect on mortality remains inconclusive. We aimed to investigate a joint effect of airway obstruction and vitamin D status on mortality in a nationally representative cohort. Methods: We analysed data of 6676 Finnish adults participating between 1978 and 1980 in a national health examination survey, undergoing spirometry and having all necessary data collected. We followed them up in national registers through record linkage until 31 December 2011. We categorised the subjects with obstruction using the lower limit of normal (LLN) and the measured serum 25-hydroxyvitamin-D (s-25(OH)D) into tertiles. Results: Both obstruction and low s-25(OH) D independently predicted mortality in a multivariate model adjusted also for age, sex, smoking, education, leisure physical activity, body mass index, asthma and serum C-reactive protein. However, a statistically significant (p = 0.007) interaction emerged: the adjusted mortality HRs (95% CI's) for s-25(OH)D in tertiles among the subjects without and with obstruction were 1.00 (lowest), 0.96 (0.87-1.05) and 0.89 (0.81-0.98); and 1.00, 0.96 (0.71-1.31) and 0.57 (0.40-0.80), respectively. Conclusions: In conclusion, obstruction and low s-25(OH)D predict mortality independently of each other. Our findings suggest that low vitamin D status might be particularly detrimental among subjects with obstruction.Peer reviewe
Multi response optimization for enhanced xylitol production by Debaryomyces nepalensis in bioreactor
Division of labor in honeybees: form, function, and proximate mechanisms
Honeybees exhibit two patterns of organization of work. In the spring and summer, division of labor is used to maximize growth rate and resource accumulation, while during the winter, worker survivorship through the poor season is paramount, and bees become generalists. This work proposes new organismal and proximate level conceptual models for these phenomena. The first half of the paper presents a push–pull model for temporal polyethism. Members of the nursing caste are proposed to be pushed from their caste by the development of workers behind them in the temporal caste sequence, while middle-aged bees are pulled from their caste via interactions with the caste ahead of them. The model is, hence, an amalgamation of previous models, in particular, the social inhibition and foraging for work models. The second half of the paper presents a model for the proximate basis of temporal polyethism. Temporal castes exhibit specialized physiology and switch caste when it is adaptive at the colony level. The model proposes that caste-specific physiology is dependent on mutually reinforcing positive feedback mechanisms that lock a bee into a particular behavioral phase. Releasing mechanisms that relate colony level information are then hypothesized to disrupt particular components of the priming mechanisms to trigger endocrinological cascades that lead to the next temporal caste. Priming and releasing mechanisms for the nursing caste are mapped out that are consistent with current experimental results. Less information-rich, but plausible, mechanisms for the middle-aged and foraging castes are also presented
Diabetes, periodontitis, and the subgingival microbiota
Both type 1 and type 2 diabetes have been associated with increased severity of periodontal disease for many years. More recently, the impact of periodontal disease on glycaemic control has been investigated. The role of the oral microbiota in this two-way relationship is at this stage unknown. Further studies, of a longitudinal nature and investigating a wider array of bacterial species, are required in order to conclusively determine if there is a difference in the oral microbiota of diabetics and non-diabetics and whether this difference accounts, on the one hand, for the increased severity of periodontal disease and on the other for the poorer glycaemic control seen in diabetics
Cytoskeletal control of B cell responses to antigens.
The actin cytoskeleton is essential for cell mechanics and has increasingly been implicated in the regulation of cell signalling. In B cells, the actin cytoskeleton is extensively coupled to B cell receptor (BCR) signalling pathways, and defects of the actin cytoskeleton can either promote or suppress B cell activation. Recent insights from studies using single-cell imaging and biophysical techniques suggest that actin orchestrates BCR signalling at the plasma membrane through effects on protein diffusion and that it regulates antigen discrimination through the biomechanics of immune synapses. These mechanical functions also have a role in the adaptation of B cell subsets to specialized tasks during antibody responses