812 research outputs found

    Geometric auxetics

    Get PDF
    We formulate a mathematical theory of auxetic behavior based on one-parameter deformations of periodic frameworks. Our approach is purely geometric, relies on the evolution of the periodicity lattice and works in any dimension. We demonstrate its usefulness by predicting or recognizing, without experiment, computer simulations or numerical approximations, the auxetic capabilities of several well-known structures available in the literature. We propose new principles of auxetic design and rely on the stronger notion of expansive behavior to provide an infinite supply of planar auxetic mechanisms and several new three-dimensional structures

    Extremal Configurations of Hinge Structures

    Get PDF
    We study body-and-hinge and panel-and-hinge chains in R^d, with two marked points: one on the first body, the other on the last. For a general chain, the squared distance between the marked points gives a Morse-Bott function on a torus configuration space. Maximal configurations, when the distance between the two marked points reaches a global maximum, have particularly simple geometrical characterizations. The three-dimensional case is relevant for applications to robotics and molecular structures

    Expansive periodic mechanisms

    Get PDF
    A one-parameter deformation of a periodic bar-and-joint framework is expansive when all distances between joints increase or stay the same. In dimension two, expansive behavior can be fully explained through our theory of periodic pseudo-triangulations. However, higher dimensions present new challenges. In this paper we study a number of periodic frameworks with expansive capabilities in dimension d≥3d\geq 3 and register both similarities and contrasts with the two-dimensional case

    Deformations of crystal frameworks

    Get PDF
    We apply our deformation theory of periodic bar-and-joint frameworks to tetrahedral crystal structures. The deformation space is investigated in detail for frameworks modelled on quartz, cristobalite and tridymite

    Liftings and stresses for planar periodic frameworks

    Get PDF
    We formulate and prove a periodic analog of Maxwell's theorem relating stressed planar frameworks and their liftings to polyhedral surfaces with spherical topology. We use our lifting theorem to prove deformation and rigidity-theoretic properties for planar periodic pseudo-triangulations, generalizing features known for their finite counterparts. These properties are then applied to questions originating in mathematical crystallography and materials science, concerning planar periodic auxetic structures and ultrarigid periodic frameworks.Comment: An extended abstract of this paper has appeared in Proc. 30th annual Symposium on Computational Geometry (SOCG'14), Kyoto, Japan, June 201

    Rotationally-invariant mapping of scalar and orientational metrics of neuronal microstructure with diffusion MRI

    Full text link
    We develop a general analytical and numerical framework for estimating intra- and extra-neurite water fractions and diffusion coefficients, as well as neurite orientational dispersion, in each imaging voxel. By employing a set of rotational invariants and their expansion in the powers of diffusion weighting, we analytically uncover the nontrivial topology of the parameter estimation landscape, showing that multiple branches of parameters describe the measurement almost equally well, with only one of them corresponding to the biophysical reality. A comprehensive acquisition shows that the branch choice varies across the brain. Our framework reveals hidden degeneracies in MRI parameter estimation for neuronal tissue, provides microstructural and orientational maps in the whole brain without constraints or priors, and connects modern biophysical modeling with clinical MRI.Comment: 25 pages, 12 figures, elsarticle two-colum

    Periodic Tilings and Auxetic Deployments

    Get PDF
    We investigate geometric characteristics of a specific planar periodic framework with three degrees of freedom. While several avatars of this structural design have been considered in materials science under the name of chiral or missing rib models, all previous studies have addressed only local properties and limited deployment scenarios. We describe the global configuration space of the framework and emphasize the geometric underpinnings of auxetic deformations. Analogous structures may be considered in arbitrary dimension

    Infinitesimal Periodic Deformations and Quadrics

    Get PDF
    We describe a correspondence between the infinitesimal deformations of a periodic bar-and-joint framework and periodic arrangements of quadrics. This intrinsic correlation provides useful geometric characteristics. A direct consequence is a method for detecting auxetic deformations, identified by a pattern consisting of homothetic ellipsoids. Examples include frameworks with higher crystallographic symmetry

    Auxetics Abounding

    Get PDF
    Auxetic behavior refers to lateral widening upon stretching. Although a structural origin for this rather counterintuitive type of deformation was often suggested, a theoretical understanding of the role of geometry in auxetic behavior has been a challenge for a long time. However, for structures modeled as periodic bar-and-joint frameworks, including atom-and-bond frameworks in crystalline materials, there is a complete geometric solution which opens endless possibilities for new auxetic designs. We construct a large family of three-dimensional auxetic periodic mechanisms and discuss the ideas involved in their design

    Singularity Locus for the Endpoint Map of Serial Manipulators with Revolute Joints

    Get PDF
    We present a theoretical and algorithmic method for describing the singularity locus for the endpoint map of any serial manipulator with revolute joints. As a surface of revolution around the first joint, the singularity locus is determined by its intersection with a fixed plane through the first joint. The resulting plane curve is part of an algebraic curve called the singularity curve. Its degree can be computed from the specialized case of all pairs of consecutive joints coplanar, when the singularity curve is a union of circles, counted with multiplicity two. Knowledge of the degree and a simple iterative procedure for obtaining sample points on the singularity curve lead to the precise equation of the curve. © Springer Science+Business Media Dordrecht 2014
    • …
    corecore