628 research outputs found
Confinement Phase in Carbon-Nanotubes and the Extended Massive Schwinger Model
Carbon nanotube with electric fluxes confined in one dimension is studied. We
show that a Coulomb interaction \propto |x| leads to a confinement phase with
many properties similar to QCD in 4D. Low-energy physics is described by the
massive Schwinger model with multi-species fermions labeled by the band and
valley indices. We propose two means to detect this state. One is through an
optical measurement of the exciton spectrum, which has been calculated via the
't Hooft-Berknoff equation with the light-front field theory. We show that the
Gell-Mann-Oakes-Renner relation is satisfied by a dark exciton. The second is
the nonlinear transport which is related to Coleman's "half-asymptotic" state.Comment: 5 pages, 3 figure
- …