151 research outputs found

    In search of the urban variable : Understanding the roots of urban planning in Portugal

    Get PDF
    This article demonstrates how public control over the street was at the origin of modern urban planning in Lisbon. The increased pressure over the street in the nineteenth-century city demanded increased public intervention, which was at the roots of urban planning as practice and as a body of theory. The strategic character assumed by urban planning derived from the fact that it was at the crossroads of the most important problems that nineteenth-century cities experienced: sanitation, circulation, and beautification. The preparation of the first Portuguese law on urban planning (1864) and the first improvement plan (1881) resulted from this need to exercise public monopoly over the use of the city streets. However, the financial, political, and technical conditions defined the scope of possibilities for the programme of improvement and beautification of the Portuguese capital. This article analyses the compromises between the forces driving modernisation and the limits of the possibilities.info:eu-repo/semantics/publishedVersio

    Study of the vertical transport in p-doped superlattices based on group III-V semiconductors

    Get PDF
    The electrical conductivity σ has been calculated for p-doped GaAs/Al0.3Ga0.7As and cubic GaN/Al0.3Ga0.7N thin superlattices (SLs). The calculations are done within a self-consistent approach to the k→⋅p→ theory by means of a full six-band Luttinger-Kohn Hamiltonian, together with the Poisson equation in a plane wave representation, including exchange correlation effects within the local density approximation. It was also assumed that transport in the SL occurs through extended minibands states for each carrier, and the conductivity is calculated at zero temperature and in low-field ohmic limits by the quasi-chemical Boltzmann kinetic equation. It was shown that the particular minibands structure of the p-doped SLs leads to a plateau-like behavior in the conductivity as a function of the donor concentration and/or the Fermi level energy. In addition, it is shown that the Coulomb and exchange-correlation effects play an important role in these systems, since they determine the bending potential

    Elemental mapping of Portuguese ceramic pieces with a full-field XRF scanner based on a 2D-THCOBRA detector

    Get PDF
    UID/FIS/04559/2020In this work, we present a novel application of the full-field energy-dispersive X-ray fluorescence (EDXRF) imaging system based on a MicroPattern Gaseous Detector (2D-THCOBRA) in the cultural heritage field. The detector has an intrinsic imaging capability with spatial resolution of 400μmFWHM, and is energy sensitive, presenting an energy resolution of approximately 1keVFWHM at 5.9keV. The full-field XRF scanner based on the 2D-THCOBRA detector allows mapping the distribution of elements in large area samples with high detection efficiency (75 % at 5.9keV), being a very promising choice for elemental mapping analysis of large area cultural heritage samples. In this work, we have demonstrated the imaging capabilities of the full-field XRF scanner and used it to assess the restoration of a Portuguese faience piece.publishersversionpublishe

    Inconsistent recognition of uncertainty in studies of climate change impacts on forests

    Get PDF
    Petr, M., Vacchiano, G., Thom, D., Mairota, P., Kautz, M., Gonçalves, L. M. D. S., ... Reyer, C. P. O. (2019). Inconsistent recognition of uncertainty in studies of climate change impacts on forests. Environmental Research Letters, 14(11), 1-13. [113003]. https://doi.org/10.1088/1748-9326/ab4670Background. Uncertainty about climate change impacts on forests can hinder mitigation and adaptation actions. Scientific enquiry typically involves assessments of uncertainties, yet different uncertainty components emerge in different studies. Consequently, inconsistent understanding of uncertainty among different climate impact studies (from the impact analysis to implementing solutions) can be an additional reason for delaying action. In this review we (a) expanded existing uncertainty assessment frameworks into one harmonised framework for characterizing uncertainty, (b) used this framework to identify and classify uncertainties in climate change impacts studies on forests, and (c) summarised the uncertainty assessment methods applied in those studies. Methods. We systematically reviewed climate change impact studies published between 1994 and 2016. We separated these studies into those generating information about climate change impacts on forests using models -'modelling studies', and those that used this information to design management actions-'decision-making studies'. We classified uncertainty across three dimensions: nature, level, and location, which can be further categorised into specific uncertainty types. Results. We found that different uncertainties prevail in modelling versus decision-making studies. Epistemic uncertainty is the most common nature of uncertainty covered by both types of studies, whereas ambiguity plays a pronounced role only in decision-making studies. Modelling studies equally investigate all levels of uncertainty, whereas decision-making studies mainly address scenario uncertainty and recognised ignorance. Finally, the main location of uncertainty for both modelling and decision-making studies is within the driving forces-representing, e.g. socioeconomic or policy changes. The most frequently used methods to assess uncertainty are expert elicitation, sensitivity and scenario analysis, but a full suite of methods exists that seems currently underutilized. Discussion & Synthesis. The misalignment of uncertainty types addressed by modelling and decision-making studies may complicate adaptation actions early in the implementation pathway. Furthermore, these differences can be a potential barrier for communicating research findings to decision-makers.publishersversionpublishe

    A biorefinery from Nannochloropsis sp. microalga – Energy and CO2 emission and economic analyses

    Get PDF
    Are microalgae a potential energy source for biofuel production? This paper presents the laboratory results from a Nannochloropsis sp. microalga biorefinery for the production of oil, high-value pigments, and biohydrogen (bioH2). The energy consumption and CO2 emissions involved in the whole process (microalgae cultivation, harvest, dewater, mill, extraction and leftover biomass fermentation) were evaluated. An economic evaluation was also performed. Oil was obtained by soxhlet (SE) and supercritical fluid extraction (SFE). The bioH2 was produced by fermentation of the leftover biomass. The oil production pathway by SE shows the lowest value of energy consumption, 177-245 MJ/MJprod, and CO2 emissions, 13–15 kgCO2/MJprod. Despite consuming and emitting c.a. 20% more than the SE pathway, the oil obtained by SFE, proved to be more economically viable, with a cost of 365€/kgoil produced and simultaneously extracting high-value pigments. The bioH2 as co-product may be advantageous in terms of product yield or profit

    Recovery of immunoglobulin G from rabbit serum using k-carrageenan-modified hybrid magnetic nanoparticles

    Get PDF
    Immunoglobulin G (IgG) has been used in the treatment of cancer, autoimmune diseases and neurological disorders, however, the current technologies to purify and recover IgG from biological media are of high-cost and time-consuming, resulting in high-cost products. In this sense, the search for cost-effective technologies to obtain highly pure and active IgG is highly required. The present work proposes a simple and efficient method for the purification and recovery of IgG from rabbit serum using magnetic iron oxide nanoparticles (magnetite, Fe3O4) coated with hybrid shells of a siliceous material modified with the anionic polysaccharide κ-carrageenan. Experimental parameters such as pH, contact time between the hybrid magnetic nanoparticles (HMNPs) and rabbit serum, and total protein concentration or dilution factor of serum were evaluated. The best results were achieved at pH 5.0, with a contact time of 60 min and using a rabbit serum with a total protein concentration of 4.8 mg·mL−1. Under these conditions, it was obtained an IgG purification factor and adsorption yield onto the HMNPs of 3.0 and 90%, respectively. The desorption of IgG from the HMNPs was evaluated using two strategies: a KCl aqueous solution and buffered aqueous solutions. Comparing to the initial rabbit serum, an IgG purification factor of 2.7 with a recovery yield of 74% were obtained using a buffered aqueous solution at pH 7.0. After desorption, the secondary structure of IgG and other proteins was evaluated by circular dichroism and no changes in the secondary structure were observed, meaning that the IgG integrity is kept after the adsorption and desorption steps. In summary, the application of HMNPs in the purification of IgG from serum samples has a high potential as a new downstream platform.in publicatio
    corecore