57 research outputs found
Recommended from our members
Biological and Aetiological Inference from the Statistical Genetic Analyses of Blood Cell Traits
Blood cells are crucial to human physiology, with functions in oxygen transport, infection
control, and wound healing. Molecular mechanisms endogenous to blood cells have
been implicated in the aetiologies of cancer, infection and inflammatory and immune
disorders. The genetic determinants of blood cell function have not been comprehensively
characterised, because it is too difficult to perform direct assays of cell function in large
population samples. High-throughput flow cytometry can be used to measure functionally
relevant phenotypes such as cell granulation, nucleic acid content, and cell size. Many
of these phenotypes are important for the diagnosis of diseases such as sepsis, Szary
disease, toxic granulation, and myelodysplastic syndromes, or correlate with assessments
of cell morphology from blood smear images. Here, I report the results of my genome-
wide association study of 63 previously genetically unstudied blood cell flow cytometry
phenotypes. I have identified associated variants in loci containing genes coding for
established drug targets with known roles in white cell function and immunity. I have
colocalised the association signals with blood cell transcriptomic, blood proteomic, and
disease risk, identifying possible causal roles for molecular mechanisms endogenous to white
cells in the aetiology of a range of immune disorders, including atopic dermatitis, multiple
sclerosis and celiac disease. My results have utility in drug design and therapeutic target
selection, demonstrated by examples including the replication of the mechanism of action
of Daclizumab, a treatment for multiple sclerosis, and evidence for the role of IL-18R1 in
aetiology of celiac disease. Furthermore, mendelian randomisation analyses suggest a causal
role for blood cell flow cytometry phenotypes in the aetiology of coronary artery disease,
lung cancer, and asthma. In addition to my work on flow cytometry traits, I report a major
contribution to the largest ever GWAS meta-analysis of routine clinical haematological
phenotypes, including 563,085 individuals. I performed primary and conditional analyses,
identifying parsimonious sets of independently associated variants. This is the largest
genome-wide association study study of clinical haematological phenotypes to date and
identifies 7,122 association signals.British Heart Foundatio
Mutation Analysis of the CYP21A2 Gene in the Iranian Population
Background: Defects in the CYP21A2 gene cause steroid 21-hydroxylase deficiency, which is the most frequent cause of congenital adrenal hyperplasia. Forty four affected families were investigated to identify the mutation spectrum of the CYP21A2 gene. Methods: Families were subjected to clinical, biochemical, and molecular analyses. Allele-specific polymerase chain reaction amplification was used for eight common mutations followed by dosage analysis to exclude CYP21A2 deletions. Results: The most frequent mutations detected were gene deletions and chimera (31.8). Other mutation frequencies were as follows: Q318X, 15.9; I2G, 14.8; I172N, 5.8; gene duplication, 5.7; R356W, 8; and E6 cluster mutations, 2.3. Direct sequencing of the CYP21A2 gene revealed R316X, P453S, c.484insT, and a change at the start codon. Different modules carried by patients were classified into five different haplotypes. The genotype phenotype correlation (positive predictive value) for group null, A, B, and C were 92.3, 85.7, 100, and 0, respectively. Conclusions: Methods used will be helpful for carrier detection and antenatal diagnosis, especially with inclusion of the multiplex ligation probe dependent amplification technique, which is easier for routine tests in comparison with other methods. Mutation frequencies indicate that Iranians are possible descendants of Asians and Europeans
Recommended from our members
A genome-wide meta-analysis yields 46 new loci associating with biomarkers of iron homeostasis
Iron is essential for many biological functions and iron deficiency and overload have major health implications. We performed a meta-analysis of three genome-wide association studies from Iceland, the UK and Denmark of blood levels of ferritin (N=246,139), total iron binding capacity (N=135,430), iron (N=163,511) and transferrin saturation (N=131,471). We found 62 independent sequence variants associating with iron homeostasis parameters at 56 loci, including 46 novel loci. Variants at DUOX2, F5, SLC11A2 and TMPRSS6 associate with iron deficiency anemia, while variants at TF, HFE, TFR2 and TMPRSS6 associate with iron overload. A HBS1L-MYB intergenic region variant associates both with increased risk of iron overload and reduced risk of iron deficiency anemia. The DUOX2 missense variant is present in 14% of the population, associates with all iron homeostasis biomarkers, and increases the risk of iron deficiency anemia by 29%. The associations implicate proteins contributing to the main physiological processes involved in iron homeostasis: iron sensing and storage, inflammation, absorption of iron from the gut, iron recycling, erythropoiesis and bleeding/menstruation.Participants in the INTERVAL randomised controlled trial were recruited with the active collaboration of NHS Blood and Transplant England (www.nhsbt.nhs.uk), which has supported field work and other elements of the trial. DNA extraction and genotyping was co-funded by the National Institute for Health Research (NIHR), the NIHR BioResource (http://bioresource.nihr.ac.uk/) and the NIHR [Cambridge Biomedical Research Centre at the Cambridge University Hospitals NHS Foundation Trust] [*]. The academic coordinating centre for INTERVAL was supported by core funding from: NIHR Blood and Transplant Research Unit in Donor Health and Genomics (NIHR BTRU-2014-10024), UK Medical Research Council (MR/L003120/1), British Heart Foundation (SP/09/002; RG/13/13/30194; RG/18/13/33946) and the NIHR [Cambridge Biomedical Research Centre at the Cambridge University Hospitals NHS Foundation Trust] [The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health and Social Care]. A complete list of the investigators and contributors to the INTERVAL trial is provided in reference 73. The academic coordinating centre would like to thank blood donor centre staff and blood donors for participating in the INTERVAL trial. Professor John Danesh is funded by the National Institute for Health Research [Senior Investigator Award]. Will Astle, Joanna Howson and Tao Jiang are funded by the National Institute for Health Research [Cambridge Biomedical Research Centre at the Cambridge University Hospitals NHS Foundation Trust]. Angela M Wood and Elias Allara are supported by EC-Innovative Medicines Initiative (BigData@Heart). Praveen Surendran is supported by a Rutherford Fund Fellowship from the Medical Research Council grant MR/S003746/1.
This work was supported by Health Data Research UK, which is funded by the UK Medical Research Council, Engineering and Physical Sciences Research Council, Economic and Social Research Council, Department of Health and Social Care (England), Chief Scientist Office of the Scottish Government Health and Social Care Directorates, Health and Social Care Research and Development Division (Welsh Government), Public Health Agency (Northern Ireland), British Heart Foundation and Wellcome. The Novo Nordisk Foundation (NNF14CC0001 and NNF17OC0027594). The Innovative Medicines Initiative 2 Joint Undertaking under grant agreement no. 115881 (RHAPSODY) (Karina Banasik and Søren Brunak). The Danish Administrative Regions; The Danish Administrative Regions’ Bio- and Genome Bank; The authors thank all the blood banks in Denmark for both collecting and contributing data to this study. Danish Blood Donor Research Fund. Aarhus University, Copenhagen University Hospital Research Fund.
Competing interests: Henrik Ullum received an unrestricted research grant form Novartis. Cristian Erikstrup received an unrestricted research grant from Abbott. Søren Brunak reports grants from Innovation Fund Denmark, grants from Novo Nordisk Foundation during the conduct of the study; and personal fees from Intomics A/S and Proscion A/S, outside the submitted work. For the authors who are affiliated with deCODE genetics/Amgen, we declare competing financial interests as employees
Recommended from our members
CRLF3 plays a key role in the final stage of platelet genesis and is a potential therapeutic target for thrombocythemia.
The process of platelet production has so far been understood to be a 2-stage process: megakaryocyte maturation from hematopoietic stem cells followed by proplatelet formation, with each phase regulating the peripheral blood platelet count. Proplatelet formation releases into the bloodstream beads-on-a-string preplatelets, which undergo fission into mature platelets. For the first time, we show that preplatelet maturation is a third, tightly regulated, critical process akin to cytokinesis that regulates platelet count. We show that deficiency in cytokine receptor-like factor 3 (CRLF3) in mice leads to an isolated and sustained 25% to 48% reduction in the platelet count without any effect on other blood cell lineages. We show that Crlf3-/- preplatelets have increased microtubule stability, possibly because of increased microtubule glutamylation via the interaction of CRLF3 with key members of the Hippo pathway. Using a mouse model of JAK2 V617F essential thrombocythemia, we show that a lack of CRLF3 leads to long-term lineage-specific normalization of the platelet count. We thereby postulate that targeting CRLF3 has therapeutic potential for treatment of thrombocythemia
GWAS of genetic factors affecting white blood cell morphological parameters in Sardinians uncovers influence of chromosome 11 innate immunity gene cluster on eosinophil morphology
Few genome-wide association studies (GWAS) analyzing genetic regulation of morphological traits of white blood cells have been reported. We carried out a GWAS of 12 morphological traits in 869 individuals from the general population of Sardinia, Italy. These traits, included measures of cell volume, conductivity and light scatter in four white-cell populations (eosinophils, lymphocytes, monocytes, neutrophils). This analysis yielded seven statistically significant signals, four of which were novel (four novel, PRG2, P2RX3, two of CDK6). Five signals were replicated in the independent INTERVAL cohort of 11 822 individuals. The most interesting signal with large effect size on eosinophil scatter (P-value = 8.33 x 10-32, beta = -1.651, se = 0.1351) falls within the innate immunity cluster on chromosome 11, and is located in the PRG2 gene. Computational analyses revealed that a rare, Sardinian-specific PRG2:p.Ser148Pro mutation modifies PRG2 amino acid contacts and protein dynamics in a manner that could possibly explain the changes observed in eosinophil morphology. Our discoveries shed light on genetics of morphological traits. For the first time, we describe such large effect size on eosinophils morphology that is relatively frequent in Sardinian population.Intramural Research Program of the National Institute on Aging (N01-AG-1-2109 and HHSN271201100005C); National Institutes of Health (NIH); by research grants from the Ministry of Science and Innovation (PGC2018-096049-B-I00); European Regional Development Fund (FEDER); Andalusian Government (BIO-198, US-1254317, US-1257019, P18-FR-3487 and P18HO-4091, US/JUNTA/FEDER, UE), University of Seville (VI PPIT) and the Ramón Areces Foundation. G.P.-M. was awarded a PhD fellowship from the Spanish Ministry of Education, Culture and Sport (FPU17/04604).Peer reviewe
A genome-wide meta-analysis yields 46 new loci associating with biomarkers of iron homeostasis
Bell et al. report 46 new loci associated with biomarkers of iron homeostasis, including ferritin levels, iron binding capacity, and iron saturation, in the Icelandic, Danish and UK populations. The associated loci point to new iron-regulating proteins and important genetic differences between men and women
The Polygenic and Monogenic Basis of Blood Traits and Diseases
Blood cells play essential roles in human health, underpinning physiological processes such as immunity, oxygen transport, and clotting, which when perturbed cause a significant global health burden. Here we integrate data from UK Biobank and a large-scale international collaborative effort, including data for 563,085 European ancestry participants, and discover 5,106 new genetic variants independently associated with 29 blood cell phenotypes covering a range of variation impacting hematopoiesis. We holistically characterize the genetic architecture of hematopoiesis, assess the relevance of the omnigenic model to blood cell phenotypes, delineate relevant hematopoietic cell states influenced by regulatory genetic variants and gene networks, identify novel splice-altering variants mediating the associations, and assess the polygenic prediction potential for blood traits and clinical disorders at the interface of complex and Mendelian genetics. These results show the power of large-scale blood cell trait GWAS to interrogate clinically meaningful variants across a wide allelic spectrum of human variation. Analysis of blood cell traits in the UK Biobank and other cohorts illuminates the full genetic architecture of hematopoietic phenotypes, with evidence supporting the omnigenic model for complex traits and linking polygenic burden with monogenic blood diseases
Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021
BACKGROUND: Disorders affecting the nervous system are diverse and include neurodevelopmental disorders, late-life neurodegeneration, and newly emergent conditions, such as cognitive impairment following COVID-19. Previous publications from the Global Burden of Disease, Injuries, and Risk Factor Study estimated the burden of 15 neurological conditions in 2015 and 2016, but these analyses did not include neurodevelopmental disorders, as defined by the International Classification of Diseases (ICD)-11, or a subset of cases of congenital, neonatal, and infectious conditions that cause neurological damage. Here, we estimate nervous system health loss caused by 37 unique conditions and their associated risk factors globally, regionally, and nationally from 1990 to 2021. METHODS: We estimated mortality, prevalence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs), with corresponding 95% uncertainty intervals (UIs), by age and sex in 204 countries and territories, from 1990 to 2021. We included morbidity and deaths due to neurological conditions, for which health loss is directly due to damage to the CNS or peripheral nervous system. We also isolated neurological health loss from conditions for which nervous system morbidity is a consequence, but not the primary feature, including a subset of congenital conditions (ie, chromosomal anomalies and congenital birth defects), neonatal conditions (ie, jaundice, preterm birth, and sepsis), infectious diseases (ie, COVID-19, cystic echinococcosis, malaria, syphilis, and Zika virus disease), and diabetic neuropathy. By conducting a sequela-level analysis of the health outcomes for these conditions, only cases where nervous system damage occurred were included, and YLDs were recalculated to isolate the non-fatal burden directly attributable to nervous system health loss. A comorbidity correction was used to calculate total prevalence of all conditions that affect the nervous system combined. FINDINGS: Globally, the 37 conditions affecting the nervous system were collectively ranked as the leading group cause of DALYs in 2021 (443 million, 95% UI 378–521), affecting 3·40 billion (3·20–3·62) individuals (43·1%, 40·5–45·9 of the global population); global DALY counts attributed to these conditions increased by 18·2% (8·7–26·7) between 1990 and 2021. Age-standardised rates of deaths per 100 000 people attributed to these conditions decreased from 1990 to 2021 by 33·6% (27·6–38·8), and age-standardised rates of DALYs attributed to these conditions decreased by 27·0% (21·5–32·4). Age-standardised prevalence was almost stable, with a change of 1·5% (0·7–2·4). The ten conditions with the highest age-standardised DALYs in 2021 were stroke, neonatal encephalopathy, migraine, Alzheimer's disease and other dementias, diabetic neuropathy, meningitis, epilepsy, neurological complications due to preterm birth, autism spectrum disorder, and nervous system cancer. INTERPRETATION: As the leading cause of overall disease burden in the world, with increasing global DALY counts, effective prevention, treatment, and rehabilitation strategies for disorders affecting the nervous system are needed
A genome-wide meta-analysis yields 46 new loci associating with biomarkers of iron homeostasis
Abstract: Iron is essential for many biological functions and iron deficiency and overload have major health implications. We performed a meta-analysis of three genome-wide association studies from Iceland, the UK and Denmark of blood levels of ferritin (N = 246,139), total iron binding capacity (N = 135,430), iron (N = 163,511) and transferrin saturation (N = 131,471). We found 62 independent sequence variants associating with iron homeostasis parameters at 56 loci, including 46 novel loci. Variants at DUOX2, F5, SLC11A2 and TMPRSS6 associate with iron deficiency anemia, while variants at TF, HFE, TFR2 and TMPRSS6 associate with iron overload. A HBS1L-MYB intergenic region variant associates both with increased risk of iron overload and reduced risk of iron deficiency anemia. The DUOX2 missense variant is present in 14% of the population, associates with all iron homeostasis biomarkers, and increases the risk of iron deficiency anemia by 29%. The associations implicate proteins contributing to the main physiological processes involved in iron homeostasis: iron sensing and storage, inflammation, absorption of iron from the gut, iron recycling, erythropoiesis and bleeding/menstruation
The Polygenic and Monogenic Basis of Blood Traits and Diseases
Blood cells play essential roles in human health, underpinning physiological processes such as immunity, oxygen transport, and clotting, which when perturbed cause a significant global health burden. Here we integrate data from UK Biobank and a large-scale international collaborative effort, including data for 563,085 European ancestry participants, and discover 5,106 new genetic variants independently associated with 29 blood cell phenotypes covering a range of variation impacting hematopoiesis. We holistically characterize the genetic architecture of hematopoiesis, assess the relevance of the omnigenic model to blood cell phenotypes, delineate relevant hematopoietic cell states influenced by regulatory genetic variants and gene networks, identify novel splice-altering variants mediating the associations, and assess the polygenic prediction potential for blood traits and clinical disorders at the interface of complex and Mendelian genetics. These results show the power of large-scale blood cell trait GWAS to interrogate clinically meaningful variants across a wide allelic spectrum of human variation.</p
- …