13,792 research outputs found

    Charged Higgs bosons in Minimal Supersymmetry: Updated constraints and experimental prospects

    Full text link
    We discuss the phenomenology of charged Higgs bosons in the MSSM with minimal flavor violation. In addition to the constrained MSSM (CMSSM) with universal soft supersymmetry breaking mass parameters at the GUT scale, we explore non-universal Higgs mass models (NUHM) where this universality condition is relaxed. To identify the allowed parameter space regions, we apply constraints from direct searches, low energy observables, and cosmology. We find that values of the charged Higgs mass as low as mH+ 135m_{H^+}\simeq~135 GeV can be accommodated in the NUHM models, but that several flavor physics observables disfavor large H+H^+ contributions, associated with high tanβ\tan\beta, quite independently of MSSM scenario. We confront the constrained scenarios with the discovery potentials reported by ATLAS and CMS, and find that the current exclusion by indirect constraints is similar to the expected LHC discovery reach with 30 fb1^{-1} of data. Finally, we evaluate the sensitivity of the presented discovery potential to the choice of MSSM benchmark scenario. This sensitivity is found to be higher in the case of a light (mH+<mtm_{H^+}<m_t) charged Higgs.Comment: 33 pages, 17 figures, v2: Minor revision, agrees with published versio

    Asymmetric magnetic reconnection with a flow shear and applications to the magnetopause

    Get PDF
    We perform a theoretical and numerical study of anti-parallel 2D magnetic reconnection with asymmetries in the density and reconnecting magnetic field strength in addition to a bulk flow shear across the reconnection site in the plane of the reconnecting fields, which commonly occurs at planetary magnetospheres. We predict the speed at which an isolated X-line is convected by the flow, the reconnection rate, and the critical flow speed at which reconnection no longer takes place for arbitrary reconnecting magnetic field strengths, densities, and upstream flow speeds, and confirm the results with two-fluid numerical simulations. The predictions and simulation results counter the prevailing model of reconnection at Earth's dayside magnetopause which says reconnection occurs with a stationary X-line for sub-Alfvenic magnetosheath flow, reconnection occurs but the X-line convects for magnetosheath flows between the Alfven speed and double the Alfven speed, and reconnection does not occur for magnetosheath flows greater than double the Alfven speed. We find that X-line motion is governed by momentum conservation from the upstream flows, which are weighted differently in asymmetric systems, so the X-line convects for generic conditions including sub-Alfvenic upstream speeds. For the reconnection rate, while the cutoff condition for symmetric reconnection is that the difference in flows on the two sides of the reconnection site is twice the Alfven speed, we find asymmetries cause the cutoff speed for asymmetric reconnection to be higher than twice the asymmetric form of the Alfven speed. The results compare favorably with an observation of reconnection at Earth's polar cusps during a period of northward interplanetary magnetic field, where reconnection occurs despite the magnetosheath flow speed being more than twice the magnetosheath Alfven speed, the previously proposed suppression condition.Comment: 46 pages, 7 figures, abstract abridged here, accepted to Journal of Geophysical Research - Space Physic

    Ecosystem properties and principles of living systems as foundation for sustainable agriculture – Critical reviews of environmental assessment tools, key findings and questions from a course process

    Get PDF
    With increasing demands on limited resources worldwide, there is a growing interest in sustainable patterns of utilisation and production. Ecological agriculture is a response to these concerns. To assess progress and compliance, standard and comprehensive measures of resource requirements, impacts and agro-ecological health are needed. Assessment tools should also be rapid, standardized, userfriendly, meaningful to public policy and applicable to management. Fully considering these requirements confounds the development of integrated methods. Currently, there are many methodologies for monitoring performance, each with its own foundations, assumptions, goals, and outcomes, dependent upon agency agenda or academic orientation. Clearly, a concept of sustainability must address biophysical, ecological, economic, and sociocultural foundations. Assessment indicators and criteria, however, are generally limited, lacking integration, and at times in conflict with one another. A result is that certification criteria, indicators, and assessment methods are not based on a consistent, underlying conceptual framework and often lack a management focus. Ecosystem properties and principles of living systems, including self-organisation, renewal, embeddedness, emergence and commensurate response provide foundation for sustainability assessments and may be appropriate focal points for critical thinking in an evaluation of current methods and standards. A systems framework may also help facilitate a comprehensive approach and promote a context for meaningful discourse. Without holistic accounts, sustainable progress remains an illdefined concept and an elusive goal. Our intent, in the work with this report, was to use systems ecology as a pedagogic basis for learning and discussion to: - Articulate general and common characteristics of living systems. - Identify principles, properties and patterns inherent in natural ecosystems. - Use these findings as foci in a dialogue about attributes of sustainability to: a. develop a model for communicating scientific rationale. b. critically evaluate environmental assessment tools for application in land-use. c. propose appropriate criteria for a comprehensive assessment and expanded definition of ecological land use

    A theoretical analysis of the chemical bonding and electronic structure of graphene interacting with Group IA and Group VIIA elements

    Get PDF
    We propose a new class of materials, which can be viewed as graphene derivatives involving Group IA or Group VIIA elements, forming what we refer to as graphXene. We show that in several cases large band gaps can be found to open up, whereas in other cases a semimetallic behavior is found. Formation energies indicate that under ambient conditions, sp3^3 and mixed sp2^2/sp3^3 systems will form. The results presented allow us to propose that by careful tuning of the relative concentration of the adsorbed atoms, it should be possible to tune the band gap of graphXene to take any value between 0 and 6.4 eV.Comment: 5 pages, 4 figures. Transferred to PR

    HIGH INHERITANCE ELONGATE STROMATOLITIC MOUNDS FROM THE TRANSVAAL DOLOMITE

    Get PDF
    Elongate mound·like structures up to 10 metres across and 40 metres in length are described. Characteristic features of the mounds are their high inheritance and considerable relief which, along with the absence of sub-aerial exposure features, the fine-grained nature of the carbonate, and their vertical persistence, are taken to suggest a subtidal origin. Marine currents are considered adequate to account for their elongation

    Correlated quantum dynamics of graphene

    Full text link
    Phase-space representations are a family of methods for dynamics of both bosonic and fermionic systems, that work by mapping the system's density matrix to a quasi-probability density and the Liouville-von Neumann equation of the Hamiltonian to a corresponding density differential equation for the probability. We investigate here the accuracy and the computational efficiency of one approximate phase-space representation, called the fermionic Truncated Wigner Approximation (fTWA), applied to the Fermi-Hubbard model. On a many-body 2D system, with hopping strength and Coulomb UU tuned to represent the electronic structure of graphene, the method is found to be able to capture the time evolution of first-order (site occupation) and second-order (correlation functions) moments significantly better than the mean-field, Hartree-Fock method. The fTWA was also compared to results from the exact diagonalization method for smaller systems, and in general the agreement was found to be good. The fully parallel computational requirement of fTWA scales in the same order as the Hartree-Fock method, and the largest system considered here contained 198 lattice sites

    Two-Impurity Kondo Model: Spin-Orbit Interactions and Entanglement

    Full text link
    Motivated by proposals to employ RKKY-coupled spins as building blocks in a solid-state quantum computer, we analyze how the RKKY interaction in a 2D electron gas is influenced by spin-orbit interactions. Using a two-impurity Kondo model with added Dresselhaus and Rashba spin-orbit interactions we find that spin-rotational invariance of the RKKY interaction - essential for having a well-controllable two-qubit gate - is restored when tuning the Rashba coupling to have the same strength as the Dresselhaus coupling. We also discuss the critical properties of the two-impurity Kondo model in the presence of spin-orbit interactions, and extract the leading correction to the block entanglement scaling due to these interactions.Comment: Proceedings of StatPhys 24 satellite conference in Hanoi; 9 pages, 4 figure

    Impact of chosen cutoff on response rate differences between selective serotonin reuptake inhibitors and placebo

    Get PDF
    Response defined as a 50% reduction in the sum score of the Hamilton Depression Rating Scale (HDRS-17-sum) is often used to assess the efficacy of antidepressants. Critics have, however, argued that dichotomising ratings with a cutoff close to the median may lead to scores clustering on either side, the result being inflation of miniscule drug-placebo differences. Using pooled patient-level data sets from trials of three selective serotonin reuptake inhibitors (SSRIs) (citalopram, paroxetine and sertraline) (n = 7909), and from similar trials of duloxetine (n = 3478), we thus assessed the impact of different cutoffs on response rates. Response criteria were based on (i) HDRS-17-sum, (ii) the sum score of the HDRS-6 subscale (HDRS-6-sum) and (iii) the depressed mood item. The separation between SSRI and placebo with respect to response rates increased when HDRS-17-sum was replaced by HDRS-6-sum or depressed mood as effect parameter and was markedly dependent on SSRI dose. With the exception of extreme cutoff values, differences in response rates were largely similar regardless of where the cutoff was placed, and also not markedly changed by the exclusion of subjects close to the selected cutoff (e.g., \ub110%). The observation of similar response rate differences between active drugs and placebo for different cutoffs was corroborated by the analysis of duloxetine data. In conclusion, the suggestion that using a cutoff close to the median when defining response has markedly overestimated the separation between antidepressants and placebo may be discarded
    corecore