6 research outputs found
Sliding window multi-curve resolution: application to gas chromatography - ion mobility spectrometry
Blind source separation (BSS) techniques aim to extract a set of source signals from a measured mixture in an unsupervised manner. In the chemical instrumentation domain source signals typically refer to time-varying analyte concentrations, while the measured mixture is the set of observed spectra. Several techniques exist to perform BSS on ion mobility spectrometry, being simple-to-use interactive self-modelling mixture analysis (SIMPLISMA) and multivariate curve resolution (MCR) the most commonly used. The addition of a multi-capillary gas chromatography column using the ion mobility spectrometer as detector has been proposed in the past to increase chemical resolution. Short chromatography times lead to high levels of co-elution, and ion mobility spectra are key to resolve them. For the first time, BSS techniques are used to deconvolve samples of the gas chromatography-ion mobility spectrometry tandem. We propose a method to extract spectra and concentration profiles based on the application of MCR in a sliding window. Our results provide clear concentration profiles and pure spectra, resolving peaks that were not detected by the conventional use of MCR. The proposed technique could also be applied to other hyphenated instruments with similar strong co-elutions
Rehabilitation via HOMe Based gaming exercise for the Upper-limb post Stroke (RHOMBUS): a qualitative analysis of participants’ experience
Objective To report participants’ experiences of trial processes and use of the Neurofenix platform for home-based rehabilitation following stroke. The platform, consisting of the NeuroBall device and Neurofenix app, is a non-immersive virtual reality tool to facilitate upper limb rehabilitation following stroke. The platform has recently been evaluated and demonstrated to be safe and effective through a non-randomised feasibility trial (RHOMBUS).
Design Qualitative approach using semistructured interviews. Interviews were audio recorded, transcribed verbatim and analysed using the framework method.
Setting Participants’ homes, South-East England.
Participants Purposeful sample of 18 adults (≥18 years), minimum 12 weeks following stroke, not receiving upper limb rehabilitation prior to the RHOMBUS trial, scoring 9–25 on the Motricity Index (elbow and shoulder), with sufficient cognitive and communicative abilities to participate.
Results Five themes were developed which explored both trial processes and experiences of using the platform. Factors that influenced participant’s decision to take part in the trial, their perceptions of support provided during the trial and communication with the research team were found to be important contextual factors effecting participants’ overall experience. Specific themes around usability and comfort of the NeuroBall device, factors motivating persistence and perceived effectiveness of the intervention were highlighted as being central to the usability and acceptability of the platform.
Conclusion This study demonstrated the overall acceptability of the platform and identified areas for enhancement which have since been implemented by Neurofenix. The findings add to the developing literature on the interface between virtual reality systems and user experience.
Trial registration number ISRCTN60291412.Innovate UK (grant number: 104188
Rehabilitation via HOMe Based gaming exercise for the Upper-limb post Stroke (RHOMBUS): protocol of an intervention feasibility trial
© Author(s) (or their employer(s)) 2018. Introduction Effective interventions to promote upperlimb
recovery poststroke are characterised by intensive
and repetitive movements. However, the repetitive nature
of practice may adversely impact on adherence. Therefore,
the development of rehabilitation devices that can be used
safely and easily at home, and are motivating, enjoyable
and affordable is essential to the health and well-being
of stroke survivors. The Neurofenix platform is a nonimmersive
virtual reality device for poststroke upper-limb
rehabilitation. The platform uses a hand controller (a
NeuroBall) or arm bands (NeuroBands) that facilitate
upper-limb exercise via games displayed on a tablet. The
Rehabilitation via HOMe Based gaming exercise for the
Upper-limb post Stroke trial aims to determine the safety,
feasibility and acceptability of the Neurofenix platform for
home-based rehabilitation of the upper-limb poststroke.
Methods and analysis Thirty people poststroke will
be provided with a Neurofenix platform, consisting of a
NeuroBall or NeuroBands (dependent on impairment level),
seven specially designed games, a tablet and handbook
to independently exercise their upper limb for 7 weeks.
Training commences with a home visit from a research
therapist to teach the participant how to safely use the
device. Outcomes assessed at baseline and 8 weeks and
12 weeks are gross level of disability, pain, objectively
measured arm function and impairment, self-reported
arm function, passive range of movement, spasticity,
fatigue, participation, quality of life (QOL) and health
service use. A parallel process evaluation will assess
feasibility, acceptability and safety of the intervention
through assessment of fidelity to the intervention
measured objectively through the Neurofenix platform,
a postintervention questionnaire and semistructured
interviews exploring participants’ experiences of the
intervention. The feasibility of conducting an economic
evaluation will be determined by collecting data on QOL
and resource use.Innovate UK grant number 104188[3463]
Rehabilitation Using Virtual Gaming For Hospital And Home- Based Training For The Upper Limb In Acute And Subacute Stroke (Rhombus Ii): Results Of A Feasibility RCT
Conference poster presented at the 19th UK Stroke Forum Conference, 1st–3rd December 2024, Liverpool ACC, UK.Introduction: Current provision of upper-limb (UL) rehabilitation during the early period post stroke is insufficient to optimise potential for recovery. Virtual reality systems, such as the Neurofenix platform, can help increase the intensity of UL rehabilitation across the stroke pathway.
Method: A feasibility RCT was undertaken to determine the safety, feasibility and acceptability of the Neurofenix platform. Stroke survivors with UL weakness were recruited from in-patient or early supported discharge stroke teams. Both groups received usual care, the intervention group also had the Neurofenix platform for 7-weeks. Outcomes were assessed at baseline and 7-weeks. Safety was assessed through adverse events (AEs), pain, spasticity and fatigue. Feasibility was determined through training and support requirements, and acceptability through intervention fidelity and a satisfaction questionnaire.
Results: 24 participants were randomised, n=16 to the intervention (13 women; mean (SD) age 66.5 (15) years; median (range) 9.5 (1-42) days post-stroke) and n=8 control group (4 women; mean (SD) age 64.6 (13.6) years; median (range) 17.5 (4-23) days post-stroke). 3 participants withdrew before 7-weeks, with 21 (intervention group n=15; control group n=6) included in the analysis. No significant between group differences in fatigue, spasticity, pain scores or total number of AEs. Median (IQR) time to train participants was 98 (64) minutes over 1-3 sessions. Participants trained with the platform for a median (range) of 11 (1-58) hours, equating to 94 minutes extra per week.
Conclusion: The Neurofenix platform is safe, feasible and well-accepted across the hospital and home settings, supporting increased dose and intensity of essential early UL stroke rehabilitation
Rehabilitation using virtual gaming for Hospital and hOMe-Based training for the Upper limb in acute and subacute Stroke (RHOMBUS II): results of a feasibility randomised controlled trial
Data availability statement:
Data are available upon reasonable request. Data will be made available on the Figshare data repository.Objective: To investigate the safety, feasibility and acceptability of the Neurofenix platform for upper-limb rehabilitation in acute and subacute stroke.
Design: A feasibility randomised controlled trial with a parallel process evaluation.
Setting: Acute Stroke Unit and participants’ homes (London, UK).
Participants: 24 adults (>18 years), acute and subacute poststroke, new unilateral weakness, scoring 9–25 on the Motricity Index (elbow and shoulder), with sufficient cognitive and communicative abilities to participate.
Interventions: Participants randomised to the intervention or control group on a 2:1 ratio. The intervention group (n=16) received usual care plus the Neurofenix platform for 7 weeks. The control group (n=8) received usual care only.
Outcomes: Safety was assessed through adverse events (AEs), pain, spasticity and fatigue. Feasibility was assessed through training and support requirements and intervention fidelity. Acceptability was assessed through a satisfaction questionnaire. Impairment, activity and participation outcomes were also collected at baseline and 7 weeks to assess their suitability for use in a definitive trial.
Randomisation: Computer-generated, allocation sequence concealed by opaque, sealed envelopes.
Blinding: Participants and assessors were not blinded; statistician blinded for data processing and analysis.
Results: 192 stroke survivors were screened for eligibility, and 24 were recruited and randomised. Intervention group: n=16, mean age 66.5 years; median 9.5 days post stroke. Control group: n=8, mean age 64.6 years; median 17.5 days post stroke. Three participants withdrew before the 7-week assessment, n=21 included in the analysis (intervention group n=15; control group n=6). No significant group differences in fatigue, spasticity, pain scores or total number of AEs. The median (IQR) time to train participants was 98 (64) min over 1–3 sessions. Participants trained with the platform for a median (range) of 11 (1-58) hours, equating to 94 min extra per week. The mean satisfaction score was 34.9 out of 40.
Conclusion: The Neurofenix platform is safe, feasible and well accepted as an adjunct to usual care in acute and subacute stroke rehabilitation. There was a wide range of engagement with the platform in a cohort of stroke survivors which was varied in age and level of impairment. Recruitment, training and support were manageable and completion of data was good, indicating that a future randomised controlled trial would be feasible.
Trial registration number: ISRCTN11440079.This work was supported by The Stroke Association and MedCity grant number SA MC 21\10001
Safety, feasibility, acceptability and preliminary effects of the Neurofenix platform for Rehabilitation via HOMe Based gaming exercise for the Upper-limb post Stroke (RHOMBUS): results of a feasibility intervention study
Data availability statement: No data are available. Participants did not consent for datasets to be stored or accessed outside of the research team. Therefore, no datasets have been made publicly available. Acknowledgments: The authors would like to thank two stroke survivors who assisted the development of the intervention and advised on the protocol, trial documentation and dissemination. Further thanks to the group facilitators of Different Strokes and the Action for Rehabilitation from Neurological Injury. Thanks to Professor Christina Victor for her support.Copyright © Author(s) (or their employer(s)) 2022. Objectives To investigate the safety, feasibility and acceptability of the Neurofenix platform for home-based rehabilitation of the upper limb (UL).
Design A non-randomised intervention design with a parallel process evaluation.
Setting Participants’ homes, South-East England.
Participants Thirty adults (≥18 years), minimum 12-week poststroke, not receiving UL rehabilitation, scoring 9–25 on the Motricity Index (elbow and shoulder), with sufficient cognitive and communicative abilities to participate.
Interventions Participants were trained to use the platform, followed by 1 week of graded game-play exposure and 6-week training, aiming for a minimum 45 min, 5 days/week.
Outcomes Safety was determined by assessing pain and poststroke fatigue at 8 and 12 weeks, and adverse events (AEs). Impairment, activity and participation outcomes were measured. Intervention feasibility was determined by the amount of specialist training and support required to complete the intervention, time and days spent training, and number of UL movements performed. Acceptability was assessed by a satisfaction questionnaire and semistructured interviews.
Results Participants (14 women; mean (SD) age 60.0 (11.3) years) were a median of 4.9 years poststroke (minimum-maximum: 1–28 years). Twenty-seven participants completed the intervention. The odds of having shoulder pain were lower at 8 weeks (OR 0.45, 95% CI 0.24 to 0.83, p=0.010) and 12 weeks (OR 0.46, 95% CI 0.25 to 0.86, p=0.014) compared with baseline. Fugl-Meyer upper extremity, Motor Activity Log and passive range of movement improved. No other gains were recorded. Poststroke fatigue did not change. Thirty mild and short-term AEs and one serious (unrelated) AE were reported by 19 participants. Participants trained with the platform for a median of 17.4 hours over 7 weeks (minimum-maximum: 0.3–46.9 hours), equating to a median of 149 min per week. The median satisfaction score was 36 out of 40.
Conclusion The Neurofenix platform is a safe, feasible and well accepted way to support UL training for people at least three months poststroke.
Trial registration number ISRCTN60291412.Innovate UK grant number 104188